ACHIEVING OPTIMAL N-3 FATTY ACID STATUS - THE VEGETARIAN’S CHALLENGE

Professor of Medicine
Sanford School of Medicine
University of South Dakota

President
OmegaQuant, LLC
Sioux Falls, SD

Senior Research Scientist
Health Diagnostic Lab, Inc.
Richmond, VA
OUTLINE

The Omega-3 Index
What is “normal” and “optimal?”
Are vegetarians n-3 FA deficient?
Vegetarian choices
 Alpha linolenic acid (ALA)
 Stearidonic acid (SDA)
 Non-fish sources of EPA and DHA
 Algae, biotech yeast and plants
OUTLINE

The Omega-3 Index
What is “normal” and “optimal?”
Are vegetarians n-3 FA deficient?
Vegetarian choices
 Alpha linolenic acid (ALA)
 Stearidonic acid (SDA)
Non-fish sources of EPA and DHA
 Algae, biotech yeast and plants
The Omega-3 Index

A measure of the amount of EPA+DHA in red blood cell membranes expressed as the percent of total fatty acids

64 fatty acids in this model membrane, 3 of which are EPA or DHA

\[
\frac{3}{64} = 4.6\%
\]

Omega-3 Index = 4.6%

OUTLINE

The Omega-3 Index

What is “normal” and “optimal?”

Are vegetarians n-3 FA deficient?

Vegetarian choices

Alpha linolenic acid (ALA)

Stearidonic acid (SDA)

Non-fish sources of EPA and DHA

Algae, biotech yeast and plants
Age- and Sex-Specific Medians for the Omega-3 Index

Framingham Offspring, Mean=5.6%a

<table>
<thead>
<tr>
<th>Decade</th>
<th>Total</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>10’s</td>
<td>1,153</td>
<td>503</td>
<td>650</td>
</tr>
<tr>
<td>20’s</td>
<td>5,948</td>
<td>2,580</td>
<td>3,368</td>
</tr>
<tr>
<td>30’s</td>
<td>14,464</td>
<td>7,017</td>
<td>7,447</td>
</tr>
<tr>
<td>40’s</td>
<td>28,545</td>
<td>14,393</td>
<td>14,152</td>
</tr>
<tr>
<td>50’s</td>
<td>39,430</td>
<td>19,368</td>
<td>20,062</td>
</tr>
<tr>
<td>60’s</td>
<td>37,991</td>
<td>18,196</td>
<td>19,795</td>
</tr>
<tr>
<td>70’s</td>
<td>22,695</td>
<td>10,442</td>
<td>12,253</td>
</tr>
<tr>
<td>80’s</td>
<td>8,561</td>
<td>3,581</td>
<td>4,980</td>
</tr>
<tr>
<td>90’s+</td>
<td>984</td>
<td>351</td>
<td>633</td>
</tr>
<tr>
<td>Total</td>
<td>159,771</td>
<td>76,431</td>
<td>83,340</td>
</tr>
</tbody>
</table>

\(\star\) P=0.005 male vs female

aHarris et al. Atherosclerosis 2012;225:425-431; bHarris et al. PLEFA, 2013
Relative Risk of Sudden Cardiac Death and Blood Omega-3 - Physicians' Health Study

Mean Blood Omega-3 FA (%) by Quartile

- 3.6%
- 4.8%
- 5.6%
- 6.9%

Relative Risk

90% reduction in risk

p for trend = 0.001

Rationale for Selecting Omega-3 Index Targets

Greatest Protection
- GISSI-P: ~9–10%
- CHS: 8.8%
- DART: ~8–9%
- SCIMO: 8.3%
- 5 epi studies: ~8%

Least Protection
- PHS: 3.9%
- SCIMO: 3.4%
- Seattle: 3.3%
- PHS: 7.3%
- Seattle: 6.5%

Omega-3 Index Risk Zones

- **Undesirable**
 - USA/EU: 4%
 - Japan: 8%

- **Intermediate**

- **Desirable**

Percent of EPA+DHA in RBC

OUTLINE

The Omega-3 Index
What is “normal” and “optimal?”
Are vegetarians n-3 FA deficient?
Vegetarian choices
 Alpha linolenic acid (ALA)
 Stearidonic acid (SDA)
Non-fish sources of EPA and DHA
 Algae, biotech yeast and plants
Omega-3 Status in Vegetarians and Vegans

Plasma fatty acids measured in
- 196 meat eaters
- 231 vegetarians
- 232 vegans

Rosell et al. AJCN 2005;82:327-334
RBC Fatty Acids in Dutch Omnivores (n=15) and Vegans (n=12)

<table>
<thead>
<tr>
<th></th>
<th>18:2n-6</th>
<th>20:4n-6</th>
<th>20:5n-3</th>
<th>22:6n-3</th>
<th>O3Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnivores</td>
<td>9.8%</td>
<td>13.8%</td>
<td>0.55%</td>
<td>3.90%</td>
<td>4.45%</td>
</tr>
<tr>
<td>Vegans</td>
<td>11.6%*</td>
<td>14.2%</td>
<td>0.22%*</td>
<td>2.04%*</td>
<td>2.26%*</td>
</tr>
</tbody>
</table>

*p<0.01

Fokkema et al. PLEFA 2000;63:279-285
OUTLINE

The Omega-3 Index
What is “normal” and “optimal?”
Are vegetarians n-3 FA deficient?
Vegetarian choices

Alpha linolenic acid (ALA)
Stearidonic acid (SDA)
Non-fish sources of EPA and DHA

Algae, biotech yeast and plants
Effects of 8 wks Flax or Fish Oil on RBC EPA and DHA Levels (n=100)

Dewell et al. J Nutr 2011;141;2166-71

*0.7 g+0.5 g; **2.1 g+1.5 g
OUTLINE

The Omega-3 Index
What is “normal” and “optimal?”
Are vegetarians n-3 FA deficient?
Vegetarian choices
 Alpha linolenic acid (ALA)
 Stearidonic acid (SDA)
Non-fish sources of EPA and DHA
 Algae, biotech yeast and plants
Stearidonic Acid Product Concept

Plant soy, canola & flax oils

18:0 D9D 18:1n9 D12D 18:2n6 D15D
stearic acid oleic acid linoleic acid

D6 Desaturase

D6 Desaturase

GLA 18:3n6 SDA 18:4n3

The Delta-6 Desaturase (D6D) in soybeans produces SDA more efficiently than D6D does in humans

SDA is a better “pro-EPA” than is ALA

18:4n3
20:5n3 EPA
22:6n3 DHA
SDA Soybean Oil Composition

*SDA content ranges from 20-30% w/w total fatty acids
Primary Endpoint: Omega 3 Index

Mean (±SEM) for per protocol population of 157 subjects

* p<0.001 compared to soy oil control; SDA and EPA not different p=0.585; ANCOVA
Efficacy of conversion of SDA (as a percent of that achieved with pure EPA feeding) and the approximate EPA dose equivalent (mg/day)
Theoretical Relative Risk Reduction for Sudden Cardiac Death Based on the Increase in the Omega-3 Index Observed after Feeding SDA

To increase Omega-3 sustainability...

Conversion rates based on the EPA content of salmon and SDA’s relative ability to enrich RBC membranes with EPA

Just one acre of Omega-3, SDA- enriched soybeans is equivalent to ~10,000 three ounce servings of salmon

10,000
If you are a food company looking to add omega-3s into your food or beverage products, learn more on this site. Soymega™ makes it easier for food companies to incorporate omega-3s into everyday foods.

Why Soymega?

Omega-3 products grew 42% in 2019 as consumer interest increased in healthy eating.

– Nielsen research, 2010

Health Benefits
Stearidonic (SDA) soybean oil is a source of an omega-3 that helps maintain heart health.

Learn More

Food Applications
Food manufacturers can offer a source of omega-3s to consumers by adding Soymega™ to a variety of foods.

Learn More

Sustainability
Soymega™ is a sustainable plant-based source of omega-3s.

Learn More
OUTLINE

The Omega-3 Index
What is “normal” and “optimal?”
Are vegetarians n-3 FA deficient?
Vegetarian choices
 Alpha linolenic acid (ALA)
 Stearidonic acid (SDA)
Non-fish sources of EPA and DHA
 Algae, biotech yeast and plants
New Harvest EPA-Producing Yeast (Dupont)

Technical Approach
Introduce genes for omega-3 biosynthesis into a GRAS yeast production host that accumulates oil when grown on glucose.

Gillies PJ. Presentation at EB 2010
Effects of Biotech-Yeast EPA vs Algal DHA on Serum N-3 FA in Healthy Subjects

30 subjects per group

Gillies PJ. Presentation at EB 2010
DHA from Plants?

• Genetically-engineered *Brassica napus* (rape)
• Produces oil with 15% DHA
• If commercializable, 1 acre could produce as much DHA as 4000 fish

Effects of DHA on Serum DHA Levels in Vegan men (n=29)

Sanders TAB. PLEFA 2009;81:137-141

200 mg/d DHA for 3 months.
Omega-3 Supplement Prices

16-Aug-12 (Colorado Springs)

<table>
<thead>
<tr>
<th>Store</th>
<th>Brand</th>
<th>Name</th>
<th>EPA</th>
<th>DHA</th>
<th>Sum</th>
<th>Cap/1g</th>
<th>$/1g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sam's Club</td>
<td>Simply Right</td>
<td>Regular Strength</td>
<td>162</td>
<td>108</td>
<td>270</td>
<td>3.70</td>
<td>$0.11</td>
</tr>
<tr>
<td></td>
<td>Simply Right</td>
<td>Double Strength + Vit D</td>
<td>324</td>
<td>216</td>
<td>540</td>
<td>1.85</td>
<td>$0.12</td>
</tr>
<tr>
<td></td>
<td>Simply Right</td>
<td>Triple Strength</td>
<td>647</td>
<td>253</td>
<td>900</td>
<td>1.11</td>
<td>$0.14</td>
</tr>
<tr>
<td>Medicine Shoppe</td>
<td>21st Century</td>
<td>Fish Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21st Century</td>
<td>Krill Oil</td>
<td>50</td>
<td>24</td>
<td>74</td>
<td>13.51</td>
<td>$4.73</td>
</tr>
<tr>
<td></td>
<td>Metagenics</td>
<td>720</td>
<td>430</td>
<td>290</td>
<td>720</td>
<td>1.39</td>
<td>$0.39</td>
</tr>
</tbody>
</table>

Online Vegan Products

<table>
<thead>
<tr>
<th>Store</th>
<th>Brand</th>
<th>Name</th>
<th>EPA</th>
<th>DHA</th>
<th>Sum</th>
<th>Cap/1g</th>
<th>$/1g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordic Naturals</td>
<td>Algae Omega</td>
<td></td>
<td>90</td>
<td>160</td>
<td>250</td>
<td>4</td>
<td>$1.42</td>
</tr>
<tr>
<td>Deva Nutrition</td>
<td>Vegan Omega-3</td>
<td></td>
<td>80</td>
<td>140</td>
<td>220</td>
<td>4.5</td>
<td>$1.26</td>
</tr>
<tr>
<td>Nature Made</td>
<td>100% Vegetarian Omega-3</td>
<td></td>
<td>90</td>
<td>180</td>
<td>270</td>
<td>3.7</td>
<td>$1.79</td>
</tr>
</tbody>
</table>
CONCLUSIONS

“Optimal n-3 fatty acid status” remains to be defined in both omnivores and vegetarians

Vegetarian choices
1. Alpha linolenic acid: Poor conversion
2. Stearidonic acid: Better conversion than ALA but available? GMO?
3. Non-fish sources of EPA and DHA: algae, biotech yeast and plants may be the long term solution. GMO?
If you can't BE a pescivore, you can at least EAT pescivorous plants!